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Abstract

The amygdala is composed of multiple nuclei with unique functions and connections in the limbic 

system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically 

delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at 

high resolution (100–150μm) at 7T field strength (n = 10), we were able to visualize and label nine 

amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory 

basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a 

recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be 
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released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a 

standard resolution structural MR image. We applied this atlas to two publicly available datasets 

(ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the 

amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer’s 

disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and 

ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically 

developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex 
vivo atlas significantly outperformed (all p < .05) estimations of the whole amygdala derived from 

the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification 

based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, 

ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide 

neuroimaging researchers with the ability to explore the function and connectivity of the human 

amygdala nuclei with unprecedented detail in healthy adults as well as those with 

neurodevelopmental and neurodegenerative disorders.
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1. INTRODUCTION

The amygdala is composed of heterogeneous nuclei, defined primarily by their distinct 

cytoarchitecture, neurotransmitters, and connectivity patterns (Freese and Amaral, 2005, 

2006, 2009; Alheid, 2003; Price et al., 1987; Aggleton, 2000; Gloor, 1972, 1978, 1997; 

McDonald, 1998; LeDoux, 1998, De Olmos, 2004; De Olmos & Heimer, 1999). Studies on 

rodents and non-human primates have advanced our understanding of the functions of the 

individual nuclei. For example, the lateral (La) and basal (Ba) nuclei are engaged in 

updating current stimulus value associations, primarily through connections with 

orbitofrontal regions (Baxter and Murray, 2002); the central nucleus (Ce) is believed to 

mediate behavioral responses to potentially harmful stimuli and fear perception through its 

connectivity with hypothalamus, basal forebrain, and the brainstem (Kalin et al., 2004; 

Phillips & LeDoux, 1992). In humans, the amygdala as a whole is thought to play a key role 

in emotional and social cognitive processes (e.g. Adolphs et al., 2005, Kliemann et al. 2012, 

Hortensius et al., 2016), and accordingly, its dysfunction is implicated in psychopathologies, 

such as mood disorders (Phillips et al., 2003; Siegle et al., 2002), anxiety disorders 

(Birbaumer et al., 1998; Rauch et al., 2003), and developmental disorders (Baron-Cohen et 

al., 2000; Dziobek et al., 2010). Additionally, several post mortem studies have shown that 

the amygdala is a common site for neurofibrillary tangles and senile plaques in mild 

cognitive impairment (Merkesbery, 2010) and Alzheimer’s disease (Yilmazer-Hanke, 1998) 

as well as Lewy bodies (Kotzbauer et al., 2011, Fujishiro et al., 2002).

However, the relationship between the structure and function of the distinct nuclei in humans 

remain largely unknown, both in health and disease. The small size of the amygdala’s nuclei 

has made it difficult to study this structure noninvasively in the living brain using standard 

neuroimaging resolution. Previous segmentation studies of the amygdala have used either i) 
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visual approximation based on a single-subject histological atlas (Etkin et al., 2004; dorsal 

vs. ventral amygdala Dolan, 2002, 2007); ii) manual segmentations based on in vivo 
neuroimaging; iii) normalization and application of a probabilistic atlas (Amunts et al., 

2005, Solano-Castiella et al., 2011); or iv) segmentations based on diffusion-weighted 

imaging. The first two approaches are labor intensive and susceptible to human error. Using 

the reference space of the MNI single subject, has limited applicability in segmentation for 

two reasons: first, spatial normalization can lead to inaccuracies due to the fact that the 

annotations were made on histology, which leads to blurry probability maps; and second, the 

direct warping of such probability maps to obtain segmentations greatly suffers from 

registration errors. Additionally, these previous approaches have segmented the amygdala 

into 2–4 nucleus groups. The use of diffusion- weighted imaging to segment the amygdala 

has been attractive due to the possibility of automation and within-subject segmentation 

(rather than normalization to a template). Fiber orientations within the amygdala have been 

used to divide the structure into two subregions, centromedial and basolateral (Solano-

Castiella et al., 2010). However, this method, like others before it, performed analyses on 

images normalized to a template brain, and were restricted to only two subdivisions. 

Diffusion connectivity patterns have also been used to delineate each individual’s amygdala 

into four nucleic groups, using nucleus-specific connectivity patterns based on previous 

animal literature (Saygin et al. 2011; Saygin et al. 2015). While this method offered more 

nucleic groups (parcellated into 4 groups), the nuclei were dependent on each individual’s 

connectivity patterns, which may be compromised in some patient populations. Thus, a 

segmentation method independent of connectivity and with finer detail (i.e. nuclei instead of 

subregions) offers a better understanding of the individual nuclei of the amygdala.

Without an easily accessible technique with which to parcellate the amygdala, it is difficult 

to elucidate the separate roles of the human amygdala nuclei, as well as the impact of 

individual differences in nucleus structure and function. Moreover, progress towards 

mechanistic theories of dysfunction and abnormal development will remain hindered until 

these structures can be explored in vivo.

Here, we use ex vivo MRI data from autopsy brains to delineate the amygdala nuclei and 

build a probabilistic atlas of amygdala anatomy, using a novel algorithm, which will be 

distributed as part of the FreeSurfer software. Our ex vivo imaging protocol yields images 

with extremely high resolution and signal-to-noise ratio, dramatically higher than is possible 

in vivo, which allows us to accurately identify more nuclei with a segmentation protocol 

specifically designed for this study. We were able to define nine amygdala nuclei that are 

major subdivisions in human and animal histology literature (e.g. deOlmos 2004; Gloor et 

al., 1997; Brockhaus 1938; Sims & Williams, 1990; Freese & Amaral, 2009; Whalen & 

Phelps 2009; LeDoux 1998), and whose boundaries are clearly visible in the ex vivo images 

(see also Methods). This segmentation focuses on the main amygdala nuclei in the medial 

temporal lobe and not the extended amygdala. Our previous work - the ex vivo hippocampal 

atlas (Iglesias et al., 2015) - uses a generative modeling framework to directly segment 

individual subject in vivo MRI data in target space; the resulting segmentation algorithm can 

be used to analyze standard in vivo MRI scans with varying overall image contrast 

properties and intensity distributions, while producing sharper and more accurate label 
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posterior probabilities than direct registration to a reference space. Here, we use this 

approach and extend it to the amygdala. We also apply this atlas to two publicly available 

datasets with standard resolution T1 data, and evaluate how well the resulting amygdala 

nucleus segmentation volumes can classify i) individuals with Alzheimer’s disease and older 

adult controls and ii) individuals with autism and age-matched controls.

2. MATERIALS and METHODS

2.1 Autopsy brain samples and ex vivo MRI acquisition

The dataset of ex vivo scans comprised 10 autopsied brain hemispheres from the 

Massachusetts General Hospital Autopsy Service (Massachusetts General Hospital, Boston, 

MA) and from the Framingham Heart Study and Boston University Alzheimer’s Disease 

Center (Veterans Administration Medical Center, Bedford, MA). Samples consisted of 5 

right and 5 left hemispheres (or blocks encompassing the amygdala) of 10 cases (9 without 

any neurological conditions, 1 with mild AD). Table 1 lists the subject-specific demographic 

information. In short, subjects were on average 67 years old at the time of death, 2 were 

female, and the post-mortem interval did not exceed 24 hours. Please note that we use the 

term ‘case’ to refer to hemispheres. We use this terminology to ensure that each case 

represents one hemisphere from a separate individual (not, e.g. 10 hemispheres from 5 

individuals).

From each ex vivo sample, a block of tissue surrounding the amygdala (or the complete 

MTL) was excised and first fixed with 10% formalin and then transferred to periodate–

lysine–paraformaldehyde (PLP). Depending on its size, the block was placed in either a 

plastic cylindrical centrifuge tube (60 ml, 3 cm diameter) or inside a plastic sealed bag filled 

with PLP. In the latter case, air was pumped out using a needle and a vacuum pump in order 

to minimize the number and size of air bubbles in the samples. The tissue block was 

subsequently scanned in a 7 T Siemens scanner using a 3D FLASH sequence with TR = 

60msec, TE = 30 msec, α = 20° (Fischl et al., 2009; Augustinack et al., 2013). Six of the 

samples were scanned at 0.1 mm isotropic resolution (three with TE = 12.8 msec and TR = 

40msec; and three with TE1 = 10.75 msec, TE2 = 25.5 msec and TR = 45 msec α = 35°), 

three at 0.12 mm and one at 0.15 mm. Radio frequency coils were used in the acquisition, 

accommodating variations in sample size: either a 4-turn solenoid coil (28.5 mm inner 

diameter, 44 mm length), a 4-channel phased-array (a linear array of loop coil elements each 

with 5 cm coil diameter, 1.5 cm overlap between adjacent elements, 16 cm in length) were 

used. Despite the fact that different coils were used to scan the different samples, the output 

images were comparable in quality. The whole procedure received IRB approval before its 

execution by the Partners Human Research Committee; thus, all tissue was collected in 

accordance with approved protocols.

Manual segmentation of ex vivo MRI data: anatomical definitions

J.C.A., Z.M.S., and D.K. developed the amygdala segmentation protocol based on several 

histology and morphometry resources (deOlmos 2004; Gloor et al., 1997; Brockhaus 1938; 

Sims & Williams, 1990; we also surveyed the monkey amygdala parcellation (Freese & 

Amaral, 2009), Whalen & Phelps 2009, Chapter 1) as an additional guide but focused on the 
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human literature as the primary source for our parcellation. The amygdala annotations are 

described in Table 2: lateral nucleus, basal nucleus, accessory basal nucleus, central nucleus, 

medial nucleus, cortical nucleus, anterior amygdaloid area, cortico-amygdaloid transition 

area. In humans, CAT is the equivalent to the periamygdaloid cortex (PAC) in animals, 

except layer PAC-3 which this protocol considers as part of the cortical nucleus (see below). 

Although several other nuclei of the amygdala have been described in histologic 

preparations (e.g. intercalated nuclei or subdivisions of each nuclei), we only labeled nuclei 

that were visible via ex vivo MRI contrast. Note that the descriptions are not based on 

histology but mainly on the contrast at the boundary that was visible in the ex vivo MRI 

data. We describe the manual labeling protocol in detail based on the contrast visible in the 

ex vivo data.

Three manual raters (Z.M.S., D.K., and E.B.) then applied the developed protocol to the ten 

ex vivo cases independently. Each case required several weeks (average 4 weeks) to annotate 

and varied slightly with image quality (due to human brain tissue variability) and in resulting 

image contrast. Although the overall image contrast varied across the cases, each case had 

sufficient image quality to be able to determine the boundary between nuclei and label these 

nuclei based on this contrast at the boundaries. Due to the high resolution of the scans, the 

resulting number of slices containing amygdala in coronal orientation was 133 (SD: 28.1) 

while a standard in vivo T1 (1mm resolution) typically contains ~18 slices of amygdala. We 

used Freeview, a visualization tool implemented in FreeSurfer to perform the manual 

labeling of the amygdala nuclei. Most MR volumes needed a slight rotation, which align the 

brain tissue to a coronal view and standardized the orthogonal planes for labeling. In the rare 

case of bubbles or tissue damage on MR images (2 cases, spreading only a very small 

portion of all slices), we labeled affected voxels according to i) the nuclei surrounding 

unaffected tissue as well as ii) the appearance of the nuclei anterior to posteriorly.

In general, annotations were made in the coronal view. Axial and sagittal views were used in 

addition to guide delineation of subregions and these additional views (and the 3D nature of 

MRI) helped better define the nuclei contrast and borders. Note that the strategy to annotate 

mainly in coronal view leads to slightly jagged boundaries in the two other views. However, 

this effect is averaged out during downsampling and construction of the atlas. To maximize 

the high level of anatomical consistency across raters, J.C.A. served as quality control, while 

supervising and suggesting refinement of delineations if necessary based on MRI boundary 

contrast between nuclei. The objective of the neuroanatomist was to verify that the labeling 

was true to the MRI contrast to ensure quality labeling and not to influence the labeling 

itself.

Atlas construction

In this study, we encode the anatomical variability of the amygdala and surrounding tissue 

into a statistical atlas. Following Van Leemput (2009), the atlas is represented by a 

tetrahedral mesh that covers the amygdala (and surrounding structures) in a canonical space. 

Each vertex in the mesh has an associated vector of label probabilities, which contains the 

relative frequencies with which each neuroanatomical label is observed at each location. 

These probabilities are estimated at non-vertex locations using barycentric interpolation. The 
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mesh is endowed with a deformation model, which allows it to cover the spectrum of 

anatomical variability in the population of the training data. This model infinitely penalizes 

the folding or collapsing of tetrahedra, which effectively preserves the topology of the mesh 

when deformed (Ashburner et al., 2000).

Constructing the atlas requires estimating the label probabilities at each vertex and the 

topology of the mesh, given a number of training manual segmentations. Here we use a 

modified version of Van Leemput’s algorithm (Iglesias et al., 2015) that enables us to 

integrate training datasets that are labeled with different protocols, such that we can combine 

the manual segmentations of the ex vivo data (nuclei of the amygdala) and the in vivo scans 

(whole amygdala and surrounding structures). These two datasets are complementary: the 

former informs the atlas on the internal structure of the amygdala, whereas the latter 

provides information on the outer contour of the amygdala and its surrounding structures.

The training process is based on Bayesian inference, i.e., answering the question: “what was 

the statistical atlas that most likely generated the manual segmentations?” The algorithm 

amounts to a group-wise registration of the manual segmentations using a high-density 

tetrahedral mesh followed by a mesh simplification process. The simplification uses a 

Bayesian model selection algorithm that automatically encodes the label uncertainty 

(blurring) in each region: convoluted areas, which are well represented in the training data 

are covered by small tetrahedra, while flat areas are covered by larger tetrahedra. Further 

details of the atlas representation can be found in Van Leemput (2009) and Iglesias (2015). 

A coronal section of the atlas with and without the tetrahedral mesh is shown in Figure 3.

Segmentation of in vivo MRI data

The segmentation of the data is posed as a Bayesian inference problem within a generative 

model of MRI images. The model assumes that: i) the atlas is first warped according to its 

deformation model; ii) a segmentation is then sampled from the label probabilities; and iii) 

image intensities are sampled at each voxel from a Gaussian distribution whose mean and 

variance depend on the label (tissue type) of the voxel. Within this model, the estimation of 

the segmentation is again posed as a Bayesian inference problem: “Given the atlas and the 

image intensities, what is the most probable segmentation?”

Finding the most like segmentation requires the minimization of a cost function that consists 

of two terms: a prior that encodes the cost of deforming the atlas and a likelihood term 

related to the probability of observing the image intensities given the segmentation. The 

segmentation algorithm minimizes the cost function by alternately optimizing the 

deformation of the atlas mesh and the Gaussian parameters (means and variances). The fact 

that these means and variances are estimated directly from the MRI scan to analyze (rather 

than encoded in the prior) makes the algorithm robust to changes in MRI contrast. Further 

details can be found in Van Leemput (2009), Van Leemput (2009b) and Iglesias (2015).

In vivo training MRI data

In order to be useful in segmentation, our probabilistic atlas needs to describe not only the 

amygdala nuclei but also the statistical distribution of the surrounding anatomy (e.g., 

hippocampus, cortex, etc). This distribution is learned from a separate dataset of 39 in vivo 

Saygin et al. Page 6

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain T1 MRI scans (19 males, 20 females, mean age: 56.3 years, 29 controls, 10 mildly 

demented) that where manually labeled at the structure level (i.e., whole amygdala, whole 

hippocampus, etc). We note that this was the dataset that was used to estimate the 

probabilistic atlas in the main FreeSurfer “recon-all” stream (Fischl et al., 2002, Fischl et al., 

2004). Using the technique described in Iglesias et al. (2015), we combined the in vivo and 

ex vivo delineations into a single probabilistic atlas, including both the amygdala nuclei and 

surrounding structures.

In vivo MR data (quantitative test sets)

We further tested whether the probabilistic atlas can not only consistently identify amygdala 

nuclei in individual standard anatomical in vivo scans, but also whether the information 

about nuclei can be used to reliably distinguish between neuropathologic and neurotypical 

groups. To this end, we compared two neuropathologic groups with matched control groups 

in which the expected between-group structural differences ranged from gross to subtle.

The first comparison was based on a dataset of MRI scans from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). AD shows substantial 

neuropathology in medial temporal lobe structures, including the amygdala.

As a second group comparison we chose a population that has a more diverse 

neuropathology in the amygdala – no clear consensus has emerged in autism yet. We 

compared age-, sex-, IQ-matched typically developed healthy control sample and Autism 

Spectrum Disorders (ASD). Data was taken from the Autism Brain Imaging Data Exchange 

initiative (ABIDE, http://fcon_1000.projects.nitrc.org/indi/abide/, DiMartino et al., 2014). 

Both datasets were processed with FreeSurfer version 5.1.

Information about the in vivo samples ADNI—The selection from the ADNI-dataset 

comprised 213 AD individuals and 161 healthy control participants matched for age (AD: 

76.04 (SD 5.42), CNT: 75.58 (SD 7.37), t(372) = .7, p = .48). The ADNI was launched in 

2003 by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, the Food and Drug Administration, private pharmaceutical companies and 

non-profit organizations, as a $60 million, 5-year public-private partnership. The main goal 

of ADNI is to test whether MRI, positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to analyze the 

progression of MCI and early AD. Markers of early AD progression can aid researchers and 

clinicians to develop new treatments and monitor their effectiveness, as well as decrease the 

time and cost of clinical trials. The Principal Investigator of this initiative is Michael W. 

Weiner, MD, VA Medical Center and University of California — San Francisco. ADNI is a 

joint effort by co-investigators from industry and academia. Subjects have been recruited 

from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 

subjects but ADNI has been followed by ADNI-GO and ADNI-2. These three protocols 

have recruited over 1500 adults (ages 55–90) to participate in the study, consisting of 

cognitively normal older individuals, people with early or late MCI, and people with early 

AD. The follow up duration of each group is specified in the corresponding protocols for 

ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO 
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had the option to be followed in ADNI-2. For up-to-date information, see http://www.adni-

info.org. MR images are T1-weighted and have 1mm isotropic resolution. Exact acquisition 

parameters depend on the site that acquired the data. Further details can be found in adni-

info.org.

ABIDE—The selection from the ABIDE-dataset included 131 individuals on the Autism 

Spectrum and 131 neurotypically-developed control subjects and was a priori to analysis. 

The selection of data from the complete dataset was motivated as follows: First, a qualitative 

assessment of FreeSurfer derived amygdala segmentations was performed by visually 

inspecting 3D representations thereof. The resulting number of cases was further reduced by 

choosing only adults (age > 18) with an IQ over 90. Third, we consecutively reduced the 

number of control subjects until the number of subjects in each group was equal by 

excluding control subjects with the highest IQ within their group. This procedure resulted in 

groups matched for age (ASD: 26.4 (SD 8.88), NT: 25.95 (SD: 6.99), t(26) = .43, p = .67), 

FIQ (ASD: 111.87, NT: 11179, t(260) = .07, p = .95) and sex (ASD: 16 females, NT: 18 

females).

Discrimination analyses—In this work, we use the ability to discriminate groups using 

volumes of nuclei as a proxy for segmentation quality. In order to ensure that the accuracy of 

the discrimination is mostly determined by the quality of the input features (i.e., volumes of 

nuclei) rather than fluctuations in the classifier, we use a simple linear discriminant analysis 

(LDA, Fisher 1936). More specifically, we use a leave one out scheme in which, for each 

subject, we first compute the direction that best separates the two classes using all other 

subjects, and then evaluate the projection of the subject at hand on that direction to compute 

a scalar score. Once we have the scores for all the subjects, we carry out two analyses. First, 

we compute the p-value of a non-parametric statistical test (Wilcoxon rank sum) comparing 

the scores of the two groups. And second, we build a receiver operating characteristic (ROC) 

curve, and compute the discrimination accuracy at the optimal point of operation (“elbow”), 

as well as the area under the curve (AUC). In order to statistically compare the performance 

of two atlases, we use a paired DeLong test (DeLong et al., 1998) that compares the areas 

under the corresponding ROC curves. This comparison tests whether information derived 

from the new atlas, either using the sum of all nuclei or using all the nuclei volumes as a 

multi-dimensional input i.e., simultaneously with LDA will outperform an existing 

segmentation of the whole amygdala (FreeSurfer segmentation).

Analyses of hemisphere, sex and age on nucleus volume—We conducted further 

analyses to test for the influence of age, hemisphere and sex on nuclei volumes in the in vivo 
test sets (ABIDE and ADNI). We tested for hemispheric and sex differences with separate 

repeated measures ANOVAs with the between-subject factor as group (ASD versus CNT) 

and the within-subject factors as nucleus (La, Ba, AB, Ce, Me, Co, CAT, AAA, PL), 

hemisphere (left, right), or sex (male, female). ICV was added as a covariate to all ANOVAs. 

To test for the influence of age on nucleus volume we conducted partial correlations with 

ICV as a covariate for both test datasets. We used Fisher’s r to z transformations to test for 

differences in between-group correlations. Given the absence of hemispheric differences 

(see Results) nuclei volumes were averaged over both hemispheres. To control for multiple 
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comparisons, p values were corrected for the number of nuclei i.e. an adjusted p value of .

0055 (.050/9) in post-hoc tests or correlations.

RESULTS

Inter-rate reliability and volume of nuclei from ex vivo manual labeling

We labeled 10 postmortem cases based on the boundaries of nine nuclei that were clearly 

visible on the high resolution ex vivo images collected at 7 T (Figure 1). Inter-rater 

reliability was calculated as the Dice coefficient (overlapping voxels between the two 

independently labeled cases divided by the union of voxels) (Dice, 1945). Two individuals 

(Z.M.S., D.K., and E.B.) labeled case #1 in its entirety and the reliability was quite high: La 

0.85; AB 0.76; Ba 0.73; Me 0.68; Ce 0.60; CAT 0.59; AAA 0.46; Co 0.44; PL 0.41; (Figure 

2). All other cases were labeled in their entirety by one individual, and 18 slices (6 

contiguous posterior, 6 contiguous middle, and 6 contiguous anterior slices) of each case 

were labeled by the other two labelers to calculate inter-labeler overlap measurements of all 

three labelers for each case (Dice coefficient mean ± se across all cases: La 0.83 ±0.02; AB 

0.73 ±0.02; Ba 0.73 ±0.02; Me 0.34 ±0.06; Ce 0.54 ±0.03; CAT 0.61 ±0.03; AAA 0.38 

±0.06; Co 0.45 ±0.05; PL 0.35 ±0.04).

Coronal slices (Figure 1) were mainly used to determine labeling but sagittal and axial views 

were also used to visualize the borders and were especially useful for the Me, Ce, and Co 

nuclei due to their elongated shape in these views (Figure 2). The 3-dimensional rendering 

of one of the ex vivo cases illustrates the oblong versus spherical shapes of nuclei in 

different orientations, and also illustrates how intertwined some of these nuclei are (AB and 

Ce; CAT and Me; Figure 4). It also captures the differences in volume between the nuclei, 

with La, Ba, AB, and CAT occupying most of the amygdala’s volume. Table 3 details the 

mean volume of each nucleus for all fully-labeled cases (ten cases).

Atlas generation and applications to in vivo MRI

An atlas was generated from the post-mortem manual labels (see Methods) and applied to 

standard in vivo MR images in two public datasets: ADNI and ABIDE. These scans were 

acquired with MPRAGE sequences at 1 mm isotropic resolution. The MRI data were 

processed through the standard FreeSurfer pipeline (Fischl et al., 2002, Fischl et al., 2004), 

including the current automated amygdala segmentation, which is useful to compare the 

segmentations yielded by the in vivo atlas of the whole amygdala with those produced by the 

ex vivo atlas we are introducing here. The resulting segmentations from the ex vivo atlas 

were not manually edited.

ADNI dataset—We calculated how well the ex vivo based segmentations discriminate AD 

from control cases based on nucleus volume. Accuracy and area under the curve (AUC) 

were computed in a leave one out manner (all analyses were corrected for age, sex, and 

ICV). The ex vivo atlas was highly accurate at discriminating between AD and control 

participants; using the sum of the amygdala nuclei volumes as the discriminating feature 

yielded 81.46% accuracy (AUC=0.83; p = 7.65 × 10−41 AD vs. control), and significantly 

outperformed the whole-amygdala atlas in FreeSurfer v5.1 (Paired DeLong test for AUC of 

Saygin et al. Page 9

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



new atlas vs. FreeSurfer v5.1: p = 1.8 × 10−6). Using all the amygdala nuclei volumes 

simultaneously from the current study was also highly accurate in discriminating AD vs. 

controls, with 84.07% accuracy (AUC = 0.9154; p = 2.80 × 10−44) and offered significant 

improvement in discrimination as compared to i) using the previous FreeSurfer atlas 

(DeLong test p = 9.×10−6) and ii) using the sum of all nucleus volumes from the current 

atlas (DeLong test p = 1.6 ×10−2) (see Table 4).

ABIDE dataset—We also applied the ex vivo segmentation atlas to another public dataset 

of autism and control participants (ABIDE; Figure 5) and calculated discriminability based 

on nucleus volume. Neuroimaging differences and effect sizes are notoriously quite small in 

the ASD literature. We wanted to know i) how well amygdala nucleus volumes would be 

able to discriminate between ASD and control participants and ii) whether the 

discrimination performance would be significantly better than using the whole amygdala 

(the sum of all nuclei volumes derived by the atlas) and better than the whole amygdala 

volume from the standard FreeSurfer segmentation. Accuracy and AUC were computed in 

exactly the same way as the ADNI dataset; and note that we did not control for age as a 

nuisance regressor, given that groups were well matched on this variable. The previous 

FreeSurfer atlas failed to discriminate between ASD vs. controls (p = 0.16 with 54.05% 

accuracy and AUC = 0.449; Table 5). In contrast, the ex vivo atlas was significantly accurate 

at discriminating between ASD and controls when using all the nuclei simultaneously (p = .

0122), but not when using the sum of all the nuclei volumes (p = 0.078; see Table 5 for 

accuracy and AUC). Using all nuclei simultaneously yielded 59.46% accuracy and AUC = 

0.5902, offering substantial improvement in discrimination as compared to i) using the 

whole amygdala volume from FreeSurfer’s automatic segmentation (DeLong test p = 

1.7e-02) and ii) using the sum of all nucleus volumes from the current atlas (DeLong test p = 

9.1e-03). The difference in AUC between the whole amygdala using FreeSurfer 5.1 or the 

aggregate volume of the nuclei was not significant (DeLong test p = 0.65). Therefore, 

despite the lack of contrast in the internal boundaries of the amygdala, the volumes of the 

nuclei carry additional information that is not present in the volume of the whole amygdala.

Additional analyses of hemisphere, sex, and age

Hemispheric differences in nuclei volumes: The repeated measures ANOVAs (with a 

between-subject factor of group: ASD or ALZ vs. CNT, and within-subject factors of 

hemisphere: left vs. right and nucleus: La, Ba, AB, Ce, Me, Co, CAT, AAA, PL) showed no 

main effect of hemisphere or interactions of hemisphere with nucleus for both in vivo test 

datasets (main effect of hemisphere: ABIDE: p > .3, ADNI: p > .06; interactions with 

hemisphere and nucleus: ABIDE: p > .5, ADNI p > .23).

Although not central to our main question of whether nuclei are influenced by hemispheric 

differences, here we also report the full ANOVA results for the sake of completeness. For the 

ADNI dataset, there were main effects of nucleus (F(1.3,380) = 23.42, p = 1.7×10−7, η = .058, 

Greenhouse-Geisser corrected), group (F(1.,380) = 282.2, p = 9.2×10−48, η = .43) as well as a 

significant interaction of nucleus and group (F(1.3,380) = 193.2, p = 5.2×10−44, η = .34, 

Greenhouse-Geisser corrected), further replicating our initial prediction analyses above. The 

influence of the covariate was significant (F(1.3,380) = 98.6, p = 8.2×10−22, η = .21), and 
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interacted with hemisphere (F(1,380) = 6.69, p = .01, η = .017, Greenhouse-Geisser 

corrected) and nucleus (F(1.3,380) = 89.05, p = 3.1−23, η = .19, Greenhouse-Geisser 

corrected).

For the ABIDE dataset, there were main effects of nucleus (F(1.4,256) = 211.3, p = 6.5×10−47, 

η = .45, Greenhouse-Geisser corrected), the covariate ICV (F(1,256) = 101.96, p = 2.1×10−20, 

η = .29) and a significant interaction of nucleus and ICV (F(1,256) = 85.7, p = 1.5×10−122, η 
= 85.6, Greenhouse-Geisser corrected).

Sex differences in nuclei volumes: In the ADNI dataset, a repeated measures ANOVA 

(with between-subject factors of group: ASD vs. CNT and sex, within-subject factor 

nucleus, covariate ICV) revealed a significant main effect of sex (F(1.3) = 9.3, p = .003, η = .

02, Greenhouse-Geisser corrected), as well as a significant interaction of sex and nucleus 

(F(1.3) = 9.4, p = 9.8−4, η = .02, Greenhouse-Geisser corrected). Post-hoc one-way ANOVAs 

testing sex differences for each nucleus separately, while controlling for ICV as a covariate, 

showed differences between hemispheres only in La (F(1.382) = 11.6, p = .0018, η = .025, 

corrected for multiple comparisons). All remaining nuclei showed trends towards greater 

nuclei volume in males (AAA: p = .028, AB: p = .027, Ba: p = .020, CAT: p = .036, Ce: .13, 

Me: p = .055, Co: p = .017, PL: p = .022).

There were main effects of nucleus (F(1.3,380) = 32.8, p = 5.8×10−10, η = .08, Greenhouse-

Geisser corrected), group (F(1.,380) = 282.5, p = 9.2×10−48, η = .43) and a significant 

interaction of nucleus and group (F(1.3,. 380) = 193.4, p = 3.1×10−44, η = .34, Greenhouse-

Geisser corrected), again replicating our initial prediction analyses above. The influence of 

the covariate was significant (F(1.3,380) = 38.8, p = 1.3 × 10−9, η = .09), and interacted with 

nucleus (F(1.3,380) = 33.5 p = 3.8 × 10−10 η = .081, Greenhouse-Geisser corrected).

Given the very small number of females in the matched ABIDE dataset (ASD: n = 16, CNT: 

n = 18) we did not test the influence of sex in the ABIDE dataset.

The influence of age on nuclei volume: For the ADNI dataset, partial correlations, 

controlling for ICV, revealed a multiple comparison corrected significant influence of age on 

almost all nuclei separately in each group and over both groups. Overall, volume declined 

with age (see Table 6).

For the ABIDE dataset, AB, CAT, PL and Co were significantly correlated with age over 

both groups, while controlling for ICV. This effect was also present in three of those nuclei 

in the ASD group (AB, CAT, Co), but no analyses passed multiple comparison correction in 

the control group (see Table 6).

There were no significant differences in the relationship between nuclei volume and age 

between the groups for either dataset (after correction for multiple comparisons; see Table 

6).
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DISCUSSION

Here, we show that we can visualize the boundaries of 9 amygdala nuclei using high 

resolution ex vivo MRI data. The nuclei were consistent across cases and raters. Manual 

labeling of these nuclei in ex vivo MRI data served as a basis to construct a statistical atlas 

of the amygdala at the nucleus level. This amygdala atlas was applied to in vivo MRI data in 

two publicly available datasets (ADNI and ABIDE). We thus determined whether the atlas 

could be used to segment the amygdala nuclei in standard resolution T1 data of varying MR 

contrast. In addition this application showed how well the resulting segmentations could 

discriminate between Alzheimer’s disease participants vs. control participants (ADNI 

dataset), and individuals with autism and age-matched controls (ABIDE dataset). We plan to 

incorporate the ex vivo amygdala nuclei atlas as part of the publicly available FreeSurfer 

software in the next release, thus opening up numerous multimodal applications in typical 

and atypical populations and allowing researchers to explore the amygdala nuclei’s function 

and structure with greater specificity than previously possible in neuroimaging.

The amygdala is an important structure for animal and human cognition and serves as a 

crucial hub for cortical, subcortical and limbic connections throughout the brain. Extensive 

research from the animal literature and post-mortem human studies show that the amygdala 

is composed of several neuronal subpopulations (Freese and Amaral, 2005, 2006, 2009; 

Alheid, 2003; Price et al., 1987; Aggleton, 2000; Gloor, 1972, 1978, 1997; McDonald, 1998; 

LeDoux, 1998), however the precise functions thereof remain yet to be defined in detail in 

humans.

Currently, no in vivo parcellation methods available allow for an automated segmentation of 

nine amygdala nuclei derived from underlying anatomy and within standard imaging 

protocols. Previous studies have used in vivo imaging where the resolution did not reveal 

numerous amygdala nuclei, parcellating the amygdala into 2–4 regions (e.g. Entis et al., 

2012; Solano-Castiella et al. 2011). T1 weighted scans of standard resolution (0.75–1 mm 

voxel size) do not provide sufficient overall image contrast for the human eye to distinguish 

the amygdala nuclei. Amygdala segmentation from diffusion weighted imaging data is 

possible, but again, the nuclei are usually grouped into larger subregions (e.g. basolateral 

instead of basal and lateral nuclei separately; Saygin et al. 2011, Bach et al. 2011). 

Compared with approaches that aim for estimating probability maps in reference spaces 

(e.g., Amunts et al., 2005, Solano-Castiella et al., 2010, 2011, Tyszka et al., 2016), the 

presented approach takes individual underlying anatomy into account, thus providing greater 

spatial sensitivity.

The present study offers four main innovations and advantages over previous work: i) higher 

(100–150μm isotropic) resolution and because of this high resolution ii) the largest number 

of amygdala nuclei resolved, labeled, and then modeled (nine nuclei), iii) an atlas based on 

n=10 cases thus allowing variability to be modeled across cases, and iv) the use of a recent 

modeling technique (Iglesias et al. 2015) that enables the inclusion in the atlas of large 

amounts of readily available in vivo segmentations of the whole amygdala. In particular, the 

generative nature of this model makes it agnostic to details of the imaging contrast, and 

hence permits the use of ultra-high-resolution, ex vivo training data. This is in contrast with 
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techniques that require intensity matching between training and test data, which essentially 

forces the training data to be in vivo and thus of significantly lower resolution and overall 

image contrast.

In conventional probabilistic atlases defined in the space of a template brain, the usual 

procedure is to register the grayscale template to a test scan, and use the resulting transform 

to propagate the label probabilities. In contrast, for atlases based on generative models like 

the one presented here, the registered atlas only represents a prior, which is combined with a 

subject-specific likelihood model (agnostic to MRI contrast) to produce a posterior 

distribution that yields the segmentation in that individual’s native space. Therefore, the 

method is adaptive to any MRI contrast, and since the prior and likelihood inform each 

other’s updates, it can generate sharper segmentations based on the posterior rather than the 

prior alone.

The atlas introduced in the current paper is easily applicable to standard anatomical MR data 

and will be implemented in a future release of the FreeSurfer software. FreeSurfer is an open 

source and widely used brain data analysis software and we intend that the new atlas will 

significantly impact future studies in advancing our understanding of amygdala nuclei 

function in the human brain.

Compared with approaches that aim for estimating probability maps in reference spaces 

(e.g., Amunts et al., 2005, Solano-Castiella et al., 2010, 2011), the present approach takes 

individual underlying anatomy into account, thus providing greater spatial sensitivity. While 

these previous studies contributed slightly larger sample sizes, the present study harnesses 

recent advancements in probabilistic modeling (i.e. Bayesian modeling) to take into account 

individual anatomy in order to parcellate the nuclei of the amygdala. Future work may also 

quantitatively compare the present atlas to other atlases that segment groups of nuclei (rather 

than individual nuclei as in the present atlas) in order to decide on the best atlases for 

different research questions. It is important to note that such comparisons of different atlases 

will depend heavily on the quality of the registration, which can be greatly compromised by 

differences in image contrast between the input atlases. When the registration of these 

template-space atlases is poor, it leads to poor overlap between the subregions segmented by 

different atlases and in different spaces (i.e. native subject space vs. template/group space).

Here, we also show that the new information about amygdala nuclei derived by the atlas can 

reliably distinguish between pathologic and normal anatomy in two separate populations, 

with higher accuracy than the volume of the whole amygdala. For the ADNI comparison, we 

expected gross anatomical differences between the pathological and the control group, given 

the neuropathology in AD and MCI (Merkesbery, 2010; Yilmazer-Hanke, 1998). In contrast, 

we expected rather small (if any) differences for the ABIDE group comparison. The exact 

structural neuropathology of the amygdala is less clear in ASD and there have been 

heterogeneous findings about the amygdala as a whole structure (e.g. Dziobek et al., 2010; 

Sparks et al., 2002). ASD is a very heterogeneous disorder clinically, and thus probably has 

a heterogeneous and complicated underlying biology. Crucially, the accuracies of group 

discriminations based on the new atlas outperformed previously available results based on 

the amygdala as a whole in both the ADNI dataset (p = 1.1×10−5) and the ABIDE dataset (p 
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= .008). Although the accuracy in the ABIDE comparison is not very high overall, using the 

current atlas still results in a significant improvement of discrimination accuracy. Moreover, 

the finding that the ASD discrimination is lower in accuracy than the Alzheimer’s 

discrimination is another important aspect of the present analysis. Whereas the ADNI 

comparison extends previous findings of volumetric differences in the amygdala between 

AD and age-matched control participants, the findings in ASD show the potential for future 

research applications: using information about anatomical changes in amygdala nuclei in 

relation to behavioral characteristics can be more sensitive than the amygdala as one 

homogenous structure. We anticipate that this new tool will support neuroimaging 

researchers to find replicable and robust differences between ASD and controls with greater 

accuracy than possible based on the whole amygdala. We provide these results as an 

example of one potential application to a clinical population with less clear neuropathology 

and encourage other researchers to test and extend this finding in different ASD and other 

psychiatric samples respectively. For example, the estimation and definition of individual 

amygdala nuclei (or grouped into other meaningful subdivisions e.g. basolateral/

centromedial complex) can serve as regions of interest for task-related functional MRI 

studies; and/or as seed regions for connectivity analyses in task-free fMRI data.

The additional exploratory analyses on the influence of hemisphere, sex, and age on nucleus 

volume in the in vivo datasets emphasizes the importance of careful matching of groups with 

respect to age and sex when comparing different groups (especially in older adult samples). 

Previous studies that have segmented the amygdala as a whole are discrepant, with some 

groups reporting larger right amygdala (e.g. Pedraza et al. 2002, Bernesconi N et al., 2003) 

or no asymmetry (Goncalves-Pereira PM et al., 2006). The absence of a hemispheric 

difference in the two datasets in the present study is informative and has implications for 

further investigations (e.g., volumes can be averaged), but in light of previous literature, 

future studies should carefully check for hemispheric differences. Another potential 

application could be to study volumetric and connectivity changes across development. For 

example, a recent study revealed that the connectivity of most amygdala subregions (central, 

basal, and lateral) continued to change between the ages of 5–30 (Saygin et al. 2015). 

However, these regions were identified based on a connectivity atlas (Saygin et al. 2011) and 

the study was limited to coarser subdivisions of the amygdala. The structural (e.g. volume or 

connectivity) and functional developmental trajectory of the nine nuclei identified here 

remains to be explored.

Some limitations of the present study are that we did not label subdivisions of the amygdala 

nuclei (i.e. the ventral, dorsal, medial, lateral parts of each nucleus) and we did not label the 

“extended amygdala” in the ten cases. The medial and central nuclei are sometimes included 

as part of the extended amygdala, so perhaps we included part of the extended amygdala; 

others think such nuclei are part of the basal ganglia because of their inhibitory nature 

(Heimer & van Hoesen 2006; Olmos & Heimer, 1999; Cassell 1999, Swanson et al., 1998). 

It is also worth noting that different groups distinguish the central nucleus’ boundaries quite 

differently; this discrepancy may be due to the two nuclei of the central nucleus 

(dorsomedial and ventrolateral), which are stained quite differently (described in Gloor 

(1978) on page 624). Amunts and colleagues included a larger central nucleus parcellation 

likely to underscore the extended amygdala concept in this region (Amunts et al., 2005). 
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Here we predominantly label the medial portion of the central nucleus (i.e. dorsomedial), 

which would agree with many definitions of the central nucleus (Freese & Amaral, 2009) 

rather than the lateral portion of the central nucleus (i.e. ventrolateral), where some 

myelinated fibers separate it from the main mass of the amygdala. These differences 

between nucleic definitions among different groups will also be important to consider when 

directly comparing different atlases. The diversity of the amygdala nuclei with respect to its 

structure, function and connectivity - has been long debated. Future studies can clarify the 

roles of the different nuclei as part of the amygdala, ventral pallidum, basal forebrain, or 

hippocampus.

CONCLUSION

In this paper, we visualized nine amygdala nuclei boundaries (anterior amygdaloid area, 

cortico-amygdaloid transition areas; basal, lateral, accessory basal, central, cortical medial, 

paralaminar nuclei) using ultra-high-resolution ex vivo imaging. The nuclei were consistent 

across cases and raters, and the resulting atlas will be distributed in the FreeSurfer software. 

The amygdala nuclei atlas was applied to two datasets, demonstrating a higher 

discriminability of Alzheimer’s disease and Autism Spectrum Disorder than previously 

possible with amygdala segmentation methods. This amygdala atlas will provide 

neuroimaging researchers with the ability to test nucleus’ function in vivo with greater 

spatial specificity in the human brain.
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Highlights

• We visualized 9 nuclei boundaries (anterior amygdaloid area, cortico-

amygdaloid transition area; basal, lateral, accessory basal, central, cortical 

medial, paralaminar nuclei) using ultra-high-resolution ex vivo imaging

• Nuclei were consistent across cases and raters

• We built a segmentation atlas of the amygdala nuclei, which will be 

distributed with FreeSurfer

• The atlas was applied to 2 separate datasets and demonstrated higher 

discriminability of Alzheimer’s disease & autism than previously possible 

with amygdala segmentation methods

• The atlas will provide neuroimaging researchers with the ability to test 

nucleus function with greater spatial specificity
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Fig 1. Coronal images from MRI of example ex vivo (case 7)
The boundaries of nine amygdala nuclei were clearly visible on the left column and were 

used to hand-label the nuclei. Resulting nuclei labels illustrated on the right column. Slices 

extend from anterior to posterior amygdala (from top to bottom panels). La: lateral; Ba: 

basal; AB: accessory basal; Ce: central; Me: medial; Co: cortical; CAT: Cortico-amygdaloid 

Transition Area; AAA: Anterior Amygdala Area; PL: paralaminar nucleus; Ot: optic tract 

(as landmark).
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Fig 2. Inter-rater comparison of nucleus labels (case 1)
Another example ex vivo case depicting the MRI contrast without any labels (left column) 

and with the manually-labeled nuclei produced by the two raters (middle and right columns). 

The location and spatial extent of the nuclei were similar between the two independent 

raters. Labels were based mainly on boundaries visible on coronal slices, but the two other 

orientations (axial and sagittal) were especially useful for checking boundaries of nuclei that 

were elongated in those orientations such as Co, CAT, Ce, and Me nuclei.
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Fie 3. Coronal section of probabilistic atlas, with (A) and without (B) tetrahedral mesh 
superimposed
The color of each voxel is a combination of the colors of the different labels, weighted by 

the corresponding probabilities at each location. Different colors represent specific nuclei: 

green: Me, dark blue: CAT, orange: AB, red: Ba, purple: Ce off-white: Co yellow: AAA, 

light blue: LA, turquoise: PL.
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Fig 4. 3-Dimensional rendering of manual segmentation based on MRI in one ex vivo case
(A) anterior, (B) medial-lateral, (C) posterior, (D) coronal view. Different colors represent 

specific nuclei: green: Me, dark blue: CAT, orange: AB, red: Ba, purple: Ce off-white: Co 

yellow: AAA, light blue: La, turquoise: PL. For display purposes label boundaries are 

smoothed (5).
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Fig 5. In vivo segmentations of amygdala nuclei overlaid on standard T1-weighted anatomical 
MR image (from ABIDE dataset)
(A) Coronal, (B) sagittal, and (C) axial views. Panel A illustrates the MR image without any 

nuclei in order to visualize contrast quality. Different colors represent specific nuclei: green: 

Me, dark blue: CAT, orange: AB, red: Ba, purple: Ce, off-white: Co, yellow: AAA, light 

blue: La.
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Table 2

Overview of anatomical boundaries and landmarks for the manual labeling protocol.

Structure Abbreviation Definition

Anterior Amygdala Area AAA
(yellow)

The AAA represents the anterior end of the amygdala. AAA borders CAT anteriorly 
and laterally and has a concave crescent shape. In its most posterior and lateral 
position, AAA detaches from the rest of the amygdala and extends until striatal tissue 
becomes visible. AAA appears as a bright band anteriorly, similar to striatal tissue but 
AAA is more medial.

Cortico-amygdaloid Transition Area CAT
(dark blue)

The CAT represents the medial border of the amygdala. Laterally CAT borders AAA, 
AB, Ba, PL and Ce along its anterior-posterior extent. The posterior portion of CAT is 
inferior to the medial nucleus. CAT’s ventral border merges into the hippocampal-
amygdala transition area (HATA) posteriorly. Occasionally, the CAT showed poor 
contrast at its anterior borders.

Lateral Nucleus La
(blue)

In the anterior portion of the amygdala, the La is typically the first nucleus to appear. 
Scrolling anterior-posterior in the coronal plane, the La transforms from a circular/
oval shape into a wedge or triangular shape. The La’s medial border remains next to 
the Ba along the entire amygdala. The anterior La borders AAA, rostrally and 
laterally. The La continues laterally and dorsally until the posterior end of the 
amygdala. La is by far the largest nucleus of the amygdala, and reveals excellent 
contrast in all cases.

Basal Nucleus Ba
(red)

The anterior appearance of the Ba follows its lateral neighboring nuclei (La) and 
borders La throughout the amygdala. When viewed in coronal plane, Ba is circular 
anteriorly, then progresses into an L-shape midway, and ends circular.

Paralaminar Nucleus PL
(turquoise)

The PL is a small, light band that is inferior to Ba, lateral to CAT, and ventro-medial 
to part of the La. PL borders Ba and La and remains until the last few slices while 
transitioning more medially towards the CAT and AB.

Accessory Basal AB
(orange)

From anterior to posterior coronal slices, the AB emerges medially from/within the 
Ba in a circle that transforms into an oval shape. Dorsally, it forms an obtuse angle 
with Ba. Medially, the AB borders CAT, while its dorsal portion borders Ce in most of 
our cases.

Medial Me
(green)

The Me emerges near the optical tract and can be visible along most of the anterior-
posterior extent of the amygdala. The Me covers most of the lateral-dorsal boundary 
of CAT. This nucleus is the most variable in shape, being either elongated and slim or 
more circular in coronal view. The axial view is useful in verifying the borders of this 
nucleus.

Central Ce
(purple)

The Ce appears circular and dorsal to AB and is between CAT medially and Ba 
laterally. For about half the cases, the Ce remains a circular shape, and for the other 
half of the cases, it becomes progressively more oval. The Ce appears brighter than its 
surrounding tissue. The axial view is useful in verifying the borders of this nucleus.

Cortical Co
(off white)

The Co emerges as a small circular nucleus, dorsally to CAT. The AB borders Co 
laterally. Overall, the Co was the smallest nucleus in size and contains the fewest 
number of slices labeled in our atlas.
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Table 3

Mean volume of ex vivo nuclei across all cases used to create the atlas (mean mm3 +/ se)

La 453.5 ± 31.4

Ba 300.9 ± 19.2

Ce 32.5 ± 7

Me 21.8 ± 5.6

Co 16.4 ± 3

AB 171.6 ± 16.9

CAT 174.8 ± 17.3

AAA 39.8 ± 7.9

PL 31.9 ± 6.4
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Table 4

Accuracy and area under the curve results for discriminating AD vs. controls in ADNI dataset.

Volumes used as input Accuracy at elbow AUC p-value AD vs. 
controls

Volume of whole amygdala from main FreeSurfer stream (“aseg”, v5.1) 74.94% 0.844 5.68×10−31

Volume of whole amygdala, (adding together the volumes of all nuclei, estimated 
with the new atlas)

81.46% 0.898 7.65×10−41

Volumes of all 9 amygdala nuclei estimated with the new atlas, used simultaneously 
with LDA

84.07% 0.915 2.80×10−44

Neuroimage. Author manuscript; available in PMC 2018 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Saygin et al. Page 29

Table 5

Accuracy and area under the curve for discriminating ASD vs. controls in ABIDE dataset.

Volumes used as input Accuracy at elbow AUC p-value ASD vs. 
controls

Volume of whole amygdala from main FreeSurfer stream (“aseg”, v5.1) 54.05% 0.4494 0.1605

Volume of whole amygdala, (adding together the volumes of all nuclei, estimated 
with the new atlas)

55.21% 0.4367 0.0544

Volumes of all 9 amygdala nuclei estimated with the new atlas, used simultaneously 
with LDA

59.46% 0.5902 0.012
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